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Encoding graphs with binary ‘family’ variables

I Suppose there are |V | fully-observed discrete variables in some
dataset. We want to learn a BN (with |V | vertices) from this
data.

I Can encode any graph by creating a binary variable I (W → u)
for each BN variable u ∈ V and each candidate parent set W .

I Each I (W → u) has a local score c ′(u,W ).

I Big problem already: That could be a lot of I (W → u)
variables.

I What might save us: Only |V | of these I (W → u) variables
will be non-zero in any solution.
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BN learning as constrained optimisation

Instantiate the I (W → u) to maximise:∑
u,W c ′(u,W )I (W → u)

subject to the I (W → u) representing a DAG.

(1)

Set c(u,W ) = −c ′(u,W ) and consider

Instantiate the I (W → u) to minimise:∑
u,W c(u,W )I (W → u)

subject to the I (W → u) representing a DAG.

James Cussens, University of York Column generation for BN learning



An integer linear programming approach

∀u ∈ V :
∑
W

I (W → u) = 1 (2)

Where C ⊆ V :
∑
u∈C

∑
W :W∩C=∅

I (W → u) ≥ 1 (3)

Cluster constraints (3) added ‘on the fly’ as cutting planes.
Introduced in [1].
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Slack variable representation

∑
u∈C

∑
W :W∩C=∅

I (W → u) ≥ 1 (4)

− wC +
∑
u∈C

∑
W :W∩C=∅

I (W → u) = 1 (5)

where wC ≥ 0. Let n be the number of I (W → u) variables then
can represent the feasible region using:

Ax = b (6)

where A is a (|V |+ |C|)× (n + |C|) matrix.

James Cussens, University of York Column generation for BN learning



Dictionary representation of an empty graph solution

Let ζ be the variable for the objective function and ζ̄ a constant
which is the score of the empty graph.

ζ = ζ̄ +
∑

u,W :W 6=∅

[c(u,W )− c(u, ∅)]I (W → u) (7)

I (∅ → u) = 1−
∑

u,W :W 6=∅

I (W → u) (8)

wC = |C | − 1−
∑
u∈C

∑
W :W∩C 6=∅

I (W → u) (9)
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Basic and non-basic variables

I LHS: The I (∅ → u) variables and the slack variables are
(currently) basic and may be positive.

I RHS: The I (W → u) variables for W 6= ∅ are (currently)
non-basic and have value zero.

ζ = ζ̄ +
∑

u,W :W 6=∅

[c(u,W )− c(u, ∅)]I (W → u) (10)

I (∅ → u) = 1−
∑

u,W :W 6=∅

I (W → u) (11)

wC = |C | − 1−
∑
u∈C

∑
W :W∩C 6=∅

I (W → u) (12)

Choose a non-basic variable with negative reduced cost to bring
into the basis.
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Column generation

I Column generation = variable generation

I It is not necessary to explicitly represent non-basic variables.

I Only create them when they are to enter the basis.

James Cussens, University of York Column generation for BN learning



Computing reduced costs

For any basis:

I x = (xB, xD)

I c = (cB, cD)

I B is the (square) submatrix of the original A matrix whose
columns correspond to xB. D is the (non-square) matrix
formed from the remaining (non-basic) columns.

I Compute dual values: λT = cTBB
−1.

I Compute reduced costs: rD = cD − λTD.
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What we need

I To compute the reduced cost of a potential new variable we
need:

I its objective coefficient value and

I its coefficient for each original linear constraint (= row of A).

I (Note that a row is added to A each time a cutting plane is
added.)
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An ILP for variable creation

I A new variable I (W → u) is determined by a choice of the
child u and also the parents W .

I Let Ich(u) indicate that u is chosen as the child and let Ipa(u)
represent that u is chosen as a parent.

∑
u∈V

Ich(u) = 1 (13)

∀u ∈ V : Ich(u) + Ipa(u) ≤ 1 (14)
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Cluster constraints

Create a variable xC for each C ∈ C indicating whether the new
variable is involved in the constraint for C . We have:

xC ≥
∑
u∈C

Ich(u)−
∑
u∈C

Ipa(u) (15)∑
u∈C

Ich(u) ≥ xC (16)

1−
∑
u∈C

Ipa(u) ≥ xC (17)
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Computing the reduced cost of the new variable

I Let λC be the dual value corresponding to the constraint for
cluster C .

I Let λu be the dual value for the convexity constraint (2) for
variable u.

The reduced cost for a new variable I (W → u) is then:

c(u,W )−
∑
u

λuIch(u)−
∑
C∈C

λCxC (18)

Hmmm, how to get c(u,W )?
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Proposed strategy

I View c(u,W ) as a real-valued variable.

I Or rather a variable which is a lower bound on this value.

I This will lead to over-optimistic generation of new variables.

I Once a new variable is proposed probably worth the effort to
consult the data to compute c(u,W ) exactly.
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